
Sci.Int.(Lahore),29(1),113-117,2017 ISSN: 1013-5316; CODEN: SINTE 8 113

Januray-February

GENETIC APPROACH TO SOLVE TOWER OF HANOI PROBLEM
Samran Naveed

1
 and Muhammad Sajid Iqbal

2
1Iinformation and Computer Science Department, King Fahd University of Petroleum and Minerals, Saudi Arabia
2Electrical Engineering Department, National University of Computer and Emerging Sciences, Karachi, Pakistan

Corresponding author email: samran.naveed@live.com

ABSTRACT: Automated planning is a useful technique in finding the solution to complex problems. And it is usually helpful to

have an algorithm to find the optimal solution for planning problems. During this work, we have proposed a genetic approach

to planning, and presented a method to apply genetic algorithm to explore state space of planning problem. To justify the

proposed approach, an artificial intelligence problem, “Tower of Hanoi” is considered. The mathematical formulation for the

problem was made in planning domain by using indirect encoding and solution is sought by applying genetic algorithm. The

proposed algorithm is flexible and to verify the flexibility, we have considered different cases of tower of Hanoi. Several

experiments are performed by considering different initial states for Tower of Hanoi, and efficiency of algorithm is analyzed by

varying the mutation and crossover rates. The obtained results are proving that our proposed algorithm is flexible and can be

enhanced for more complex planning problems. The detailed results along with complete analysis are also included in results

and discussion section of this paper.
Key words – Genetic Algorithm, Automated Planning, Tower of Hanoi, Artificial Intelligence

INTRODUCTION
Many human activities require explicit planning for example
when the problem is complex, the environment imposes
risk/cost, or we are addressing a new situation. The main
objectives of planning are Scientific Objectives and
Engineering Objectives [1]. Scientific objectives involve,
understanding of intelligent behavior and engineering
objectives involves, building of intelligent entities. We can
illustrate the conceptual model of planning as a state-
transition system; in general, state-transition system consists
of a set of states, set of actions and a state transition function
and the objective is, “given an initial and goal state find a
valid set of actions that lead the system from initial state to
goal state”. A plan is a structure that gives appropriate actions
to apply in order to achieve goal state, when starting from a
given initial state. State transition system is usually denoted
as follows.

 () ()
Where S = {s1, s2…sn} is a finite set of states. A = {a1, a2…,
an} is a finite set of actions γ is a state transition system and
can be expressed as follows.

 ()
If a∈A and γ (s, a) ≠ ø then “a” is applicable in “s”. State
transition system describes all ways in which a system may
evolve. There could be different types of objectives of a
planning problem. For example, some of the concrete
objectives may involve finding a desired goal-state or a set of
goal-states or optimize utility function attached to states [2].
In real world problems no single or agreed upon description
is available and people care about the solution. To solve a
planning problem different searching methods are used. In
general, planning problems are more complex and difficult
than searching problems. Planning problems involve large
search spaces and we cannot always guarantee that the
correct solution will be available every time. Before
exploring the search space, we must assume that the
environment is finite and discrete, fully observable,
deterministic and static.
Most common searching algorithms for planning problems
find a good solution rarely. Forward state space search and
backward state space search are two most general and famous
algorithms for searching plans. These algorithms are required
to search entire search space to find a solution. In real world
problems, the search spaces are very large, so these

algorithms may not perform very well [3]. Moreover, in
forward state-space and backward state-space search
algorithms we use deterministic searching methods [1] that
make them inefficient in large search spaces.

Genetic algorithm (GA) inspired by theory of evolution is a
search heuristic algorithm. We often use GA to search the
solutions for optimization problems. For large search spaces
and NP-complete problems, genetic algorithms are suitable.
To reach the final solution through GA, we generate multiple
populations and the most-fit generation has higher chance to
survive in next generation [1]. In the new population the
generations undergo crossover and mutation processes. Each
generation consists of a solution, and the most fit or most
relevant generation becomes the final solution. The steps of
GA are shown in Fig. 1.

In this study, we have considered “Tower of Hanoi” problem,
and formalized it to solve by using genetic algorithm. Tower
of Hanoi is a classic artificial intelligence problem in which
we have three pegs and different number of disks and the
goal is to move all disks from initial peg to goal peg without
violating the rules. Some non-recursive algorithms [4] also
proposed to solve the problem, but they do not perform well
as the number of pegs and disks increased. But, in this
research work we formulated the problem as a state transition
system of planning; here we have set of states that contain all
the possible states of pegs. In addition, set of actions consists
of all possible moves. The initial state is the starting
configuration of all the pegs, and the goal state is the desired
configuration of the pegs. To solve this formulation with
genetic algorithm we have used direct encoding of moves to
represent the set of actions. The details of formulation can be
found in section III and experiments carried out to validate
this formulation along with their results are presented in
section IV.
RELATED WORK
The enetic algorithm is an optimization algorithm; this fact
makes genetic algorithm to be applied to solve numerous
kind of problems including planning problems. R. N. Cardoso
et. al. [5] described the ability of automated planning in
solving real time problems and solved it with genetic
algorithm by converting the problem into an optimization
problem. The researchers considered the container loading
problem (CLP) with the aim to reduce the logistical costs.

mailto:samran.naveed@live.com

114 ISSN: 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),29(1),113-117,2017

Januray-February

They designed a complete CLP system in automated planning
domain and found the optimized set of actions to reduce the
cost in container loading problem.

Fig.1. Steps for genetic algorithm

Despite of very good explanation and formulation provided

by the authors they have not provided comprehensive details

of fitness functions. Furthermore, the fitness evaluation

details they provided, the lack of diversity and effectiveness

with respect to guidance the algorithm towards a optimal

solution.

Another real time application of automated planning can be

found in [2] in which Y. Sulaiman et. al. presented an

approach to automatically generating the sequence diagrams

by considering them planning problem. The core idea was to

identify the preconditions and post conditions and consider

them the initial and goal states. They considered the methods

as actions and formulated a plan to solve the sequence

diagram generation problem. The authors have provided very

limited empirical evaluation. And they have used traditional

depth first and breadth first searching algorithms to search the

state transition system which are not efficient if the search

space is very large.

L. Machado et. al. [6] presented a planning based approach

to solve task allocation problem for crowd-sourcing. Crowd-

sourcing is comparatively new phenomenon in computer

science and its primary function is to outsource a task to a

crowd of participants who will solve that task but the

challenge is the task allocation. Task allocation in crowd-

sourcing is not that simple especially when there are many

factors to tackle like, knowledge required, task’s

requirements, heterogeneity and size of the task. To

efficiently handle the task allocation problem, they used

automated planning as a test and to evaluate its performance.

The shortcomings in this research are they have only tested

the automated planning in the task allocation domain at a

basic level, and did not perform extensive empirical

evaluation.

S. Soltani et. al. [7] proposed an approach to the software

product lines problem which is, feature model configuration

based on function and non-functional requirements. The

author formulated the problem using an automated planning

domain and enabled the users to automatically select features’

configuration which comply with both functions and non-

functional requirements. In real time systems the functional

and non-functional requirements are usually a large set, based

on the formulation and details presented by the authors in [7]

it will be very time consuming and resource demanding to

compute suitable set of features.

The problem of tower of Hanoi is well described by T. Jones

in [8] and our solution encoding is inspired from the

formulation described in [8]. The author used the direct

encoding to encode the solutions, and represented the moves

as integers. The solution provided in [8] is only for three

disks tower of Hanoi and is only providing the description of

genetic algorithm steps, no information is given in the context

of planning. Due to the lack of diversity in genetic

algorithms, the solution converges prematurely and keeps on

searching for a long time.

A genetic algorithm based approach proposed by J. Li et. al.

in [9], the authors formulated the tower of Hanoi problem in

searching domain and used a genetic algorithm to find the

solution. For genetic algorithm the direct encoding of

chromosomes is used. Although the presented approach

successfully finds the solution, but the algorithm performs

very slow as the number of disks increases also the algorithm

finds the solution rarely. Even with a small number of disks

the algorithm takes reasonable time to find the optimal

solution. Finally, only mutation is applied during the design

of algorithm no crossover has been used which may have

anegative impact on the results.

PROBLEM FORMULATION
Before describing the actual problem formulation in

detail, it is worth describing here the problem rules. To solve

tower of Hanoi problem one must follow these rules.

 At a time one disk can be moved

 A smaller disk cannot be placed under the larger

disk

 All disks, except the one being moved must be on

a peg

Above mentioned rules will decide the applicability

of a certain action to some state. There are different steps of

genetic algorithm to find a solution. Fig. 1 is showing the

flow of these steps and the following lines are discussing it

with respect to tower of Hanoi. Before going into the details

of genetic algorithm steps lets elaborate the states, actions

and state transition.

 * + ()
 * + ()

Therefore, the plan for our problem becomes:

 () ()

Where s0is initial state, we have solved this problem

for different initial states. For example, one can provide

different configuration as initial state (for 3 disks problem, let

say we provide 1 disk on peg A, 1 disk on peg B and 1 disk

on peg C) and sg is goal state.

Population: Each population consists of different generations

called chromosomes and each chromosome consists of genes.

In chromosomes, the genes are problem specific. In some

problems, genes may be binary and in some other problems,

genes may be characters. In our case, each gene will represent

a move. We have used a direct encoding to encode the

moves. Three pegs A, B and C are represented as integers 0,

Sci.Int.(Lahore),29(1),113-117,2017 ISSN: 1013-5316; CODEN: SINTE 8 115

Januray-February

1 and 2 respectively and the moves are encoded similarly, for

example move from peg A to B is represented as 01 and

move from A to C is represented as 02 and so on. Each

population will consist of a reasonable length of

chromosomes and we have set the length of individual

chromosome equal to the optimum number of moves. The

optimum number of moves to solve towers of Hanoi problem

is given as 2
n
 – 1. Where n is the number of disks. When

algorithm runs for the first time, it will generate a population

randomly.
Evaluation: Once the population is generated and initialized,
it is evaluated to calculate its chromosome’s fitness. To
evaluate the fitness of a chromosome it’s all genes are applied
to the initial state one by one and all the illegal moves are
counted. Every move that violates the rules described above
is considered as illegal. For example, let say the current move
is “02” that is applied to the initial state (all disks are on peg
A) and after application of this move one disk will be moved
to peg C, this is a legal move, as it did not violate any rule.
Now, let say the next move is again 02 this move cannot be
accomplished because it is an illegal move due to th second
rule. The fitness is calculated by first calculating the Match
Fitness (MF) and multiplying it with Goal Fitness (GF) of the
chromosome. Match fitness and goalfitness is calculated as
follows.

 ()

 ()

 ()

The fitness is calculated for a chromosome and the calculated
value is assigned to the same chromosome. This process will
continue for all chromosomes in current population. The
calculated fitness is compared with the max fitness (i.e. 1), if
it is equal to max fitness it means this is the best-fit
chromosome and it contains the solution as well. If it is not
equal to max fitness, then the algorithm will check next
chromosome until it finds the solution of most fit
chromosome in the current population. If algorithm is unable
to find the solution in current population, it will reproduce te
new population and check the fitness of all chromosomes
again.

Selection (Reproduction): We want to improve the
populations overall fitness. Selection helps us to improve the
fitness by rejecting the bad chromosomes and keeping the
best chromosomes in the population. There are different
selection methods but the basic idea is same, that the fitter
chromosomes will be selected for te next generation. In our
solution, we have used Tournament Selection approach to
select chromosomes for te next generation. To avoid the
algorithm not to stuck in local optimum it is important to not
to choose the top fittest chromosomes.

Crossover: Crossover is the process that creates a new
chromosome by partially inheriting genes from two different
chromosomes. Once the chromosomes are selected for new
generation, they undergo the process of crossover. We
performed different rate of crossover.

Mutation: Mutation is the process in which a gene of a
chromosome is changed randomly. In under discussion
problem a move (represented as gene) of a chromosome will
change randomly.
Repeat: The process of selection, crossover and mutation will
repeat until the algorithm found the solution or the population
fitness is not improving for a certain number of generations.
For example, if the fitness of the generation is stuck to a
specific number and it is not improving since 100 generations
then the algorithm should terminate.
We implemented the above formulation to solve the tower of
Hanoi problem. Our implementation can solve not only the
traditional tower of Hanoi (initially all disks are on peg A)
problem, but also the variations of the problem (user can
define te number of disks on all three pegs in initial state).
Fig. 2 is showing one of the possible initial states.

EXPERIMENTS AND RESULTS
Different experiments with different initial states are
conducted with the implemented solution. Before describing
the experimental results, the details about experimental setup
are provided below.
The solution is implemented in PHP version 5.5.15 and to
draw the final states graphically, a jQuery library is used. The
experiments are carried out on core i5 machine with 4 GB
RAM. As PHP is a scripting language and it runs in browsers
so the experiments were performed in google chrome
browser. The implemented solution executed for multiple
times by varying the genetic parameters to analyze the effect
of genetic parameters to find the solution for the give initial
state. Table I is shows the details of experiments that were
conducted by varying the crossover rate. First row in Table I
shows the number of disks used to perform the experiment,
second row is showing the initial state A: 3 means that there
are three disks on peg A in initial state and zero disk on other
pegs. In third row the mutation rate is given that is fixed to
0.01 for the experiments whose results are given in the table.
The fourth row is showing the different crossover rates that
we used in different iterations of the experiments and fifth
row is showing the average execution time. The last row is
showing that after how much iteration the implemented
solution finds the solution for tower of Hanoi problem by
using given settings. We executed thirty runs for each
experiment so the average execution time and average
number of iterations for solutions are for thirty iterations.

Fig. 2. Initial state

Table I

Effect of Crossover on Experimental Results

No. of Disks 3

Initial State A: 3 B: 0 C: 0

Mutation 0.01

No. of Generations 100

Crossover 0.1 0.2 0.3 0.4

116 ISSN: 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),29(1),113-117,2017

Januray-February

Avg. Execution

Time
0.364s 0.371s 0.369s 0.361s

Avg. no. of

Iterations for

Solution

23 19 16 15

Table II

Effect of Mutation on Experimental Results

No. of Disks 3

Initial State A: 3 B: 0 C: 0

Crossover 0.4

No. of Generations 100

Mutation 0.02 0.03 0.04 0.05

Avg. Execution

Time
0.360s 0.381s 0.373s 0.368s

Avg. no. of

Iterations for

Solution

15 13 9 9

We have plotted the population fitness that illustrates how
population evolved to find a solution. Fig. 3 is showing the
fitness plot for crossover 0.4 with mutation rate of 0.04, it is
clear from the plot that when mentioned crossover and
mutation rate is used then the fitness converges quickly and
algorithm finds solution quickly. Fig. 4 is showing the plot
for crossover rate of 0.3 with mutation rate of 0.04 it is clear
from the plot that the algorithm find solution approximately
at generation 37. Fig. 5 and Fig. 6 are showing the different
fitness plot that is plotted when the crossover rate is 0.2 and
0.1 respectively with mutation rate of 0.04. Sometimes it
happens that the algorithm stuck in the local maximum and
unable to converge. Fig. 7 is showing one of the stuck
condition where the algorithm was stuck at 0.666 fitness and
did not converge. We have applied termination condition that
if the algorithm remains stuck on some fitness for predefined
number of generations, and then stop the execution. Finally,
when the algorithm finds a solution it will display it with the
final state as shown in Fig. 8.
Along with traditional initial states we also performed
experiments on nontraditional initial state for example in
Table III one nontraditional state is mentioned where all three
pegs have one disks. In order to define these states, we have
to provide the disks weights, so the algorithm can
differentiate on which peg, what disk is placed, higher weight
means bigger disk. In the Table III the initial state is, “A: 1”,
“B: 1” and “C: 1”. Which means that on all three pegs there is
one disk, and we defined the weights of the disks in a way
that, A has the smallest disk placed on it B has the medium
disk placed on it and C has the largest disk placed on it. From
the previous experiments results we can infer that, the
suitable values for crossover and mutation rate are 0.4 and
0.04 respectively. So to perform the experiments same thirty
iterations are used for nontraditional initial state experiment,
and we found that the algorithm was able to find the solution
early as compared to traditional initial state.
As we described before that we defined the initial state in
such a way that last peg contains the biggest disk so to solve
this problem we only need two actions. First action will put
the medium disk on last peg on top of largest disk and the
second action will put the smallest disk on top of other disks

and once we found these two more suitable actions we will
stop the execution of the algorithm.

Table III

Effect of Crossover on Experimental Results

No. of Disks 3

Initial State A: 1 B: 1 C: 1

Crossover 0.4

No. of Generations 100

Mutation 0.04

Avg. Execution Time 0.11s

Avg. no. of Iterations for Solution 3

Fig. 3. Population Evolution for crossover 0.4 and mutation 0.04

Fig. 4. Population Evolution for crossover 0.3 and mutation 0.04

Fig. 5. Population for crossover 0.2 and mutation 0.04

Fig. 6. Population for crossover 0.1 and mutation 0.04

Fig. 7. Stuck condition

Sci.Int.(Lahore),29(1),113-117,2017 ISSN: 1013-5316; CODEN: SINTE 8 117

Januray-February

Fig. 8. Final state with the optimal solution

THREATS TO VALIDITY
Before approaching the conclusion, it is worthwhile to state
some of the threats to validity of the experiments. To
implement the solution, we followed the OOP paradigm and
we used arrays as data structure to handle populations and
genes. The performance may be improved if some other data
structures are used like heaps or binary trees, it may also
improve the execution time overall.
Another possible threat to validity is the lack of diversity in
genetic algorithm and its non-deterministic behavior.
Sometimes if we are lucky, we can find the solution quickly
and sometime we were unable to find the solution after
several runs, instead of finding the optimal solution the
algorithm stuck in local optimum.

CONCLUSION
In this paper, we have presented a planning based formulation
of tower of Hanoi problem and solved it by using genetic
algorithm. The problem formulation was made by using the
indirect encoding and successfully implemented in PHP.
Results of the experiments are showing that the genetic
algorithm is capable of solving tower of Hanoi problem. The
genetic parameters like crossover rate and mutation rate play
an important role in finding the solution. It can be seen from
the results of the conducted experiments that in three disks
case the implemented solution was able to efficiently find the
optimal solution.
Some threats to validity of this solution are also discussed,
which may be dealt by enhancing the problem formulation
and implementation. It can be noticed from the literature that
very limited number of studies has been conducted on
automated planning by using genetic algorithm. Automated
planning and genetic algorithm are being used in various
domains, but they are used separately and for different
purposes. So we can say that our work is one of the earliest
works of applying genetic algorithms to planning problems.
We can perform more experiments by varying other genetic
factors like population size, generation size in order to
enhance the justification of our approach. We are also
planning to improve our approach further and apply it to
different domains and complex problems. For example the
automatic generation of sequence diagrams can be thought as
a planning problem under certain conditions, so we can apply
the genetic algorithm approach to automatically generate the
sequence diagrams.

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach: Pearson Education, 2003.

[2] Y. Sulaiman and M. Ahmed, "Automating UML
Sequence Diagram Generation by treating it as a
Planning Problem", presented at the International
Conference on Distributed Multimedia Systems, 2012.

[3] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning: Addison-Wesley
Longman Publishing Co., Inc., 1989.

[4] F. Ren, Q. Yang, J. Zheng, and H. Yan, "Non-recursive
Algorithm of Tower of Hanoi Problem," presented at the
Proceedings of the 10th IEEE International Conference
on Computer and Information Technology, 2010.

[5] R. N. Cardoso, M. V. M. Ferreira, A. R. de Sousa, and J.
J.-P. Z. S. Tavares, "A Genetic Algorithm Approach to
the Automated System for Solving the Container
Loading Problem," in Robotics: 12th Latin American
Robotics Symposium and Third Brazilian Symposium on
Robotics, LARS 2015/SBR 2015, Uberlândia, Brazil,
October 28 - November 1, 2015, Revised Selected
Papers, F. Santos Osório and R. Sales Gonçalves, Eds.,
ed Cham: Springer International Publishing, 2016, pp.
267-280.

[6] L. Machado, R. Prikladnicki, F. Meneguzzi, C. R. B. d.
Souza, and E. Carmel, "Task allocation for
crowdsourcing using AI planning," presented at the
Proceedings of the 3rd International Workshop on
CrowdSourcing in Software Engineering, Austin, Texas,
2016.

[7] S. Soltani, M. Asadi, D. Ga, #353, evi, #263, M. Hatala,
and E. Bagheri, "Automated planning for feature model
configuration based on functional and non-functional
requirements," presented at the Proceedings of the 16th
International Software Product Line Conference -
Volume 1, Salvador, Brazil, 2012.

[8] T. Jones, Artificial Intelligence: A Systems Approach
with CD: Jones and Bartlett Publishers, Inc., 2008.

[9] J. Li and R. Shen, "An Evolutionary Approach to Tower
of Hanoi Problem," in Genetic and Evolutionary
Computing: Proceeding of the Eighth International
Conference on Genetic and Evolutionary Computing,
October 18-20, 2014.

